Piano is a common abbreviation for pianoforte, a musical instrument with a keyboard (see keyboard instrument). Its sound is produced by strings stretched on a rigid frame. These vibrate when struck by felt-covered hammers, which are activated by the keyboard. The word pianoforte is from the Italian for soft-loud, referring to the ability of the piano to play notes at many volumes.

As a keyboard stringed instrument, the piano is similar to the clavichord and harpsichord. The three instruments differ in the mechanism of sound production. In a harpsichord, strings are plucked by quills or similar material. In the clavichord, strings are struck by tangents which remain in contact with the string. In a piano, the strings are struck by hammers which immediately rebound, leaving the string to vibrate freely.

Table of contents
1 History
2 The modern piano
3 Resources
4 Other


The piano was invented by Bartolomeo Cristofori in Florence, Italy. When he built his first piano is not entirely clear, but Franceso Mannucci wrote in his diary that Cristofori was working on an "arcicembal che fa il piano e il forte" ("harpsichord that plays both softly and loudly") as early as 1698. All of his surviving instruments date from the 1720s.

Like most inventions, the piano was founded on earlier technological innovations. In particular, it benefitted from centuries of work on the harpsichord, which had shown the most effective ways to construct the case, the soundboard, the bridge, and the keyboard. Cristofori was himself a harpsichord maker and well acquainted with this body of knowledge.

Cristofori's great success was to solve, without any prior example, the fundamental mechanical problem of piano design: the hammers must strike the string but not continue to touch it once they have struck (which would damp the sound). Moreover, the hammers must return to their rest position without bouncing violently, and it must be possible to repeat a note rapidly. Cristofori's piano action served as a model for the many different approaches to piano action that were to follow.

Cristofori's early instruments were made with thin clavichord strings, and were much quieter than the modern piano. However, they could produce a wider range of dynamics than the clavichord, and the sound sustained longer.

Cristofori's new instrument remained relatively unknown until an Italian writer, Scipione Maffei, wrote an enthusiastic article about it, complete with diagrams of the mechanism. This article was widely distributed, and most of the next generation of piano builders started their work as a result of reading it.

One of these builders was Gottfried Silbermann, better known as an organ builder. Silbermann's pianos were virtually direct copies of Cristofori's, but with an important exception: Silbermann invented the forerunner of the modern damper pedal, which permits the dampers to be lifted from all the strings at once. In Silbermann's pianos, this was done not by depressing a pedal, but by pulling on an organ-style draw-stop. Virtually all subsequent pianos incorporated some version of Silbermann's idea.

Silbermann showed Bach one of his early instruments in the 1730s. Bach did not like it at that time, though he did approve of a later instrument he saw in 1747, and apparently even served as an agent to help sell Silbermann's pianos.

Piano making flourished during the late 18th century in the work of the Viennese school, which including Johann Andreas Stein (who worked in Augsburg, Germany) and the Viennese makers Nannette Stein (daughter of Johann Andreas) and Anton Walter. The Viennese-style pianos were built with wooden frames, two strings per note, and leather-covered hammers. It was for such instruments that Mozart composed his concertos and sonatas, and replicas of them are built today for use in authentic-instrument performance. The piano of Mozart's day had a softer, clearer tone than today's pianos, with less sustaining power. The word "tinkling" is unfair when applied to the lovely sound of these instruments, but it does perhaps suffice to convey roughly how they differ in tone from modern pianos.

The term fortepiano is often used to distinguish the 18th century style of instrument from later pianos.

In the lengthy period lasting from about 1790 to 1890, the Mozart-era piano underwent tremendous changes which ultimately led to the modern form of the instrument. This evolution was in response to a consistent preference by composers and pianists for a more powerful, sustained piano sound. It was also a response to the ongoing Industrial Revolution, which made available technological resources like high-quality steel for strings and precision casting for the production of iron frames.

Over time, piano playing became a more strenuous and muscle-taxing activity, as the force needed to depress the keys, as well as the length of key travel, was increased. The tonal range of the piano was also increased, from the five octaves of Mozart's day to the 7 1/3 (or even more) octaves found on modern pianos.

In the first part of this era, technological progress owed much to the English firm of Broadwood, which already had a strong reputation for the splendor and powerful tone of its harpsichords. Over time, the Broadwood instruments grew progressively larger, louder, and more robustly constructed. The Broadwood firm, which sent pianos to both Haydn and Beethoven, was the first to build pianos with range of more than five octaves: five octaves and a fifth during the 1790s, six by 1810 (in time for Beethoven to use the extra notes in his later works), and seven by 1820. The Viennese makers followed these trends. The two schools, however, used different piano actions: the Broadwood one more robust, the Viennese more sensitive.

By the 1820s, the center of innovation had shifted to the Érard firm of Paris, which built pianos used by Chopin and Liszt. In 1821, Sébastien Érard invented the double escapement action, which permitted a note to be repeated even if the key had not yet risen to its maximum vertical position, a great benefit for rapid playing. As revised by Henri Herz about 1840, the double escapement action ultimately became the standard action for grand pianos, used by all manufacturers.

Some other important technical innovations of this era include the following:

  • use of three strings rather than two for all but the lower notes

  • the iron frame. The iron frame, also called the "plate", sits atop the soundboard, and serves as the primary bulwark against the force of string tension. The iron frame was the ultimate solution to the problem of structural integrity as the strings were gradually made thicker, tenser, and more numerous (in a modern grand the total string tension can approach 20 tons). The iron frame was invented in 1825 in Boston by Alpheus Babcock, culminating an earlier trend to use ever more iron parts to reinforce the piano. The first iron frame in grand pianos (1840) was the work of the Chickering firm, at which Babcock was employed.

  • felt hammers. The harder, tauter steel strings required a softer hammer type to maintain good tone quality. Hammers covered with compressed felt were introduced by the Parisian maker Jean-Henri Pape in 1826, and are now universally used.

  • the sostenuto pedal (see below), invented 1844 by Jean Louis Boisselot and improved by the Steinway firm in 1874.

  • The overstrung scale, also called "cross-stringing". This is a special arrangement of strings within the case: the strings are placed in a vertically overlapping slanted arrangement, with two bridges on the soundboard instead of just one. The purpose of the overstrung scale was to permit longer strings to fit within the case of the piano. Overstringing was invented by Jean-Henri Pape during the 1820s, and first applied to the grand by Henry Steinway Jr in 1859.

  • Duplex scaling, invented by Theodore Steinway in 1872, permits the parts of the string near its ends, which otherwise would be damped with cloth, to vibrate freely, thus increasing resonance and adding to the richness of the sound. Aliquot stringing, which serves a similar purpose in Blüthner pianos, was invented by Julius Blüthner in 1873.

The modern concert grand achieved essentially its present form around the beginning of the 20th century, and progress since then has been only incremental.

Some early pianos had shapes and designs that are no longer in use. The once-popular square piano had the strings and frame on a horizontal plane, but running across the length of the keyboard rather than away from it. It was similar to the upright piano in its mechanism. Square pianos were produced through the early 20th century; the tone they produced is widely considered to be inferior. Most had a wood frame, though later designs incorporated increasing amounts of iron. The giraffe piano, by contrast, was mechanically like a grand piano, but the strings ran vertically up from the keyboard rather than horizontally away from it. This makes it a very tall instrument. These were uncommon.

Piano history and musical performance

The huge changes in the evolution of the piano have somewhat vexing consequences for musical performance. The problem is that much of the most widely admired music for piano—for example, that of Haydn, Mozart, and Beethoven—was composed for a type of instrument that is extremely different from the modern instruments on which this music is normally performed today. Even the music of the early Romantics, such as Chopin and Schumann, was written for pianos substantially different from ours.

One view that is sometimes taken is that these composers were dissatisfied with their pianos, and in fact were writing visionary "music of the future" with a more robust sound in mind. This view is perhaps more plausible in the case of Beethoven, who composed at the beginning of the era of piano growth, than it is in the case of Haydn or Mozart.

Others have noted that the music itself often seems to require the resources of the early piano. For example, Beethoven sometimes wrote long passages in which he directs the player to keep the damper pedal down throughout (a famous example occurs in the last movement of the "Waldstein" sonata, Op. 53). These come out rather blurred on a modern piano if played as written, but work well on (restored or replicated) pianos of Beethoven's day. Similarly, the classical composers sometimes would write passages in which a lower violin line accompanies a higher piano line in parallel; this was a reasonable thing to do at a time when piano tone was more penetrating than violin tone; today it is the reverse.

Current performance practice is a mix. A few pianists simply ignore the problem; others modify their playing style to help compensate for the difference in instruments, for example by using less pedal. Finally, participants in the authentic performance movement have constructed new copies of the old instruments and used them in performance; this has provided important new insights and interpretations of the music.

The modern piano

Types of piano

Modern pianos come in two basic configurations and several sizes: the grand piano and the upright piano.

Grand pianos have the frame and strings placed horizontally, with the strings extending away from the keyboard. This avoids the problems inherent in an upright piano, but takes up a great deal of space. Several sizes of grand piano exist. Manufacturers vary, but as a rough guide we can distinguish the "concert grand": approx. 3m; the "grand": approx. 1.8m; and the "baby grand". All else being equal, longer pianos have better sound, so that full-size grands are almost always used for public concerts, whereas baby grands are only for domestic use where space and cost are crucial considerations.

Upright pianos are more compact due to the frame and strings being placed vertically, extending in both directions from the keyboard and hammers. It is considered harder to produce a sensitive piano action when the hammers move sideways, rather than upward against gravity; however, the very best upright pianos now approach the level of grand pianos of the same size in tone quality and responsiveness. For recent advances, see Innovations in the piano.

In 1863, Henri Fourneaux invented the player piano, a kind of piano which "plays itself" without the need for a pianist. Also in the 19th century, toy pianos began to be manufactured.

A relatively recent development is the prepared piano, which is a piano adapted in some way by placing objects inside the instrument, or changing its mechanism in some way.

Since 1990's digital pianos have become available, which digitize the sound of each piano note. Digital pianos have become quite sophisticated, with standard pedals, multiple voices, MIDI interfaces, and so on. However, with current technology, it remains difficult to duplicate a crucial aspect of acoustic pianos, namely that when the damper pedal (see below) is depressed, the strings not struck vibrate sympathetically with the struck strings. Since this sympathetic vibration is considered central to a beautiful piano tone, digital pianos are still not considered by most experts as competing with the best acoustic pianos in tone quality. Progress is now being made in this area by including physical models of sympathetic vibration in the synthesis software.

Keyboard and pedals

Almost every modern piano has 88 keys (seven octaves and a bit, A to C). Many older pianos only have 85 (from A to A), while some manufacturers extend the range further in one or both directions. The most notable example of an extended range can be found on Bösendorfer pianos, some of which extend the normal range downwards to F, with others going as far as a bottom C, making a full eight octave range. On some models these extra keys are hidden under a small hinged lid, which can be flipped down to cover the keys and avoid visual disorientation in a pianist unfamiliar with the extended keyboard. The extra keys are added primarily for increased resonance; that is, they vibrate sympathetically with other strings whenever the damper pedal is depressed. Only a very small number of works composed for piano actually use these notes. More recently, the Stuart and Sons company has also manufactured extended-range pianos.

For the arrangement of the keys on a piano keyboard, see Musical keyboard. This arrangement was inherited from the harpsichord without change, with the trivial exception of the color scheme (white for naturals and black for sharps) which became standard for pianos in the late 18th century.

Pianos have had pedals, or some close equivalent, since the earliest days. (In the 18th century, some pianos used levers pressed upward by the player's knee instead of pedals.) The three pedals that have become more or less standard on the modern piano are the following.

The damper pedal is often simply called "the pedal," since it is the most important. It is placed as the rightmost pedal in the group. Every note on the piano except for (approximately ) the top two octaves is equipped with a damper, which is a padded device that prevents the strings from vibrating. The damper is raised off the strings of its note whenever the key for that note is pressed. When the damper pedal is pressed, all the dampers on the piano are lifted at once, so that every string can vibrate. This serves two purposes. First, it permits notes to be connected (i.e., played legato) when there is no fingering that would make this possible. More important, raising the damper pedal causes all the strings to vibrate sympathetically with whatever notes are being played, which greatly enriches the tone.

Piano music starting with Chopin tends to be heavily pedaled, as a means of achieving a singing tone. In contrast, the damper pedal was used only sparingly by the composers of the 18th century, including Haydn, Mozart and Beethoven; in that era, pedaling was considered primarily as a special coloristic effect.

The soft pedal or "una corda" pedal is placed leftmost in the row of pedals. On a grand piano, this pedal shifts the action to one side slightly, so that hammers that normally strike all three of the strings for a note strike only two of them. This softens the note and also modifies its tone quality. For notation of the soft pedal in printed music, see Italian musical terms.

The soft pedal was invented by Cristofori and thus appeared on the very earliest pianos. In the 18th and early 19th centuries, the soft pedal was more effective than today, since it was possible at that time to use it to strike three, two or even just one string per note—this is the origin of the name "una corda", Italian for "one string". In modern pianos, the strings are spaced too closely to permit a true "una corda" effect—if shifted far enough to strike just one string on one note, the hammers would also strike the string of the next note over.

On upright pianos, the soft pedal is replaced by a mechanism for moving the hammers' resting position closer to the strings. This reduces volume, but does not change tone quality as a true "una corda" pedal does.

The sostenuto pedal or "middle pedal" maintains in the raised position any damper that was raised at the moment the pedal was depressed. It makes it possible to sustain a note while the player's hands have moved on to play other notes, which can be useful for musical passages with pedal points and other tricky situations. The sostenuto pedal was the last of the three pedals to be added to the standard piano, and to this day many cheap pianos—and even a few good ones—do not have a sostenuto pedal. A number of twentieth-century works call for the use of this pedal.

The materials of the piano

Many parts of a piano are made of materials selected for extreme sturdiness. The outer rim of the piano, is made (in quality pianos) of a hardwood, normally maple or beech. According to Harold A. Conklin, the purpose of a sturdy rim is so that "the vibrational energy will stay as much as possible in the soundboard instead of dissipating uselessly in the case parts, which are inefficient radiators of sound." The rim is normally made by laminating flexible strips of hardword to the desired shape, a system that was developed by Theodore Steinway in 1880.

The thick wooden braces at the bottom (grands) or back (uprights) of the piano are not as acoustically important as the rim, and are often made of a softwood, even in top-quality pianos, in order to save weight.

The pinblock, which holds the tuning pins in place, is another area of the piano where toughness is important. It is made of hardwood, and generally is laminated (built of multiple layers) for additional strength and gripping power.

Piano strings, which must endure years of extreme tension and hard blows, are made of high quality steel. They are manufactured to vary as little as possible in diameter, since all deviations from uniformity introduce tonal distortion. The bass strings of a piano are made of a steel core wrapped with copper wire, to increase their flexibility. For the acoustic reasons behind this, see Piano acoustics.

The plate, or metal frame, of a piano is usually made of cast iron. It is advantageous for the plate to be quite massive. Since the strings are attached to the plate at one end, any vibrations transmitted to the plate will result in loss of energy to the desired (efficient) channel of sound transmission, namely the bridge and the soundboard. Some manufacturers now use cast steel in their plates, for greater strength. The casting of the plate is a delicate art, since the dimensions are crucial and the iron shrinks by about one percent during cooling. The inclusion in a piano of an extremely large piece of metal is potentially an esthetic handicap. Piano makers overcome this handicap by polishing, painting, and decorating the plate; often plates include the manufacturer's ornamental medallion and can be strikingly attractive.

The numerous parts of a piano action are generally hardwood or plastic. The choice between these two materials is controversial. Some varieties of plastic, incorporated into pianos in the 1950's and 1960's, were clearly disastrous, crystallizing and losing their strength after one or two decades of use. The Steinway firm once used Teflon, a plastic, for some action parts, but ultimately abandoned the experiment. More recently, the Kawai firm has built pianos with action parts made of more modern and effective plastics; these parts have held up better and have generally received the respect of piano technicians.

The part of the piano where materials probably matter more than anywhere else is the soundboard. In quality pianos this is made of solid spruce (that is, spruce boards glued together at their edges). Spruce is chosen for its high ratio of strength to weight. The best piano makers use close-grained, quarter-sawn, defect-free spruce, and make sure that it has been carefully dried over a long period of time before making it into soundboards. In cheap pianos, the soundboard is often laminated; i.e. made of plywood.

Piano keys are generally made of spruce or basswood, for lightness. Spruce is normally used in high-quality pianos. Traditionally, the white keys were covered with strips of ivory, but since ivory-yielding species are now endangered and protected by treaty, plastic is now universally used. The Yamaha firm innovated a plastic, since imitated by other makers, that mimics the feel of ivory on the player's fingers.

The requirement of structural strength, fulfilled with stout hardwood and thick metal, makes pianos heavy. Even a small upright can weigh 300 pounds (136 kg.), and the Steinway concert grand (Model D) weighs 990 pounds (480 kg). The largest piano built, the Fazioli F308, weighs 1520 pounds (691 kg).

Care and maintenance of pianos

Pianos that are prized and appreciated by their owners are tuned regularly, roughly once every four to six months for domestic pianos, and always just before a performance in concert halls. The effect of being out of tune depends on degree. When a piano is only slightly out of tune, it loses the glowing tonal quality characteristic of a freshly-tuned piano, probably because strings slightly out of tune with one another have weaker sympathetic vibrations. Pianos that are more than slightly out of tune tend to be unpleasant to play and listen to, to an extent that varies with the ear of the listener.

Pianos go out of tune primarily because of changes in humidity. Tuning can be made more stable by installing special equipment to regulate humidity, inside or underneath the piano. There is no evidence that being out of tune actually harms the piano itself.

The felt hammers of the piano tend to harden over time. They also form grooves at the points of contact with the strings. Harder hammers produce a brighter tone quality, which may ultimately become undesirable. Piano technicians can soften hammers using special tools. They also sometimes use special solvents that can harden a hammer. In either case, an important goal is uniform tone quality across the piano, since the hammers are not used with equal frequency and therefore tend to wear unevenly. The process of altering the hardness of piano hammers is called voicing. Voicing image, from the Schimmel piano company.

Over time, the action of a piano tends to alter in its function, and a skilled technician can restore it to its original level of precision, in a process called regulation. Indeed, many pianos are not perfectly regulated when released from the factory, and benefit from regulation in the store or—if necessary—after purchase. Regulation image, from the Schimmel piano company

Pianos are furniture, and in this role they benefit from cleaning and polishing, done carefully to avoid introduction of any fluids into the piano's interior. For many piano finishes, dust removal is better done with a feather duster than a cloth, which minimizes the abrasive effect of the dust.

Pianos have a limited lifetime, usually measured in decades. However, in some decrepit pianos, the soundboard, frame, and often at least some of the action remain in good condition, and piano restorers are able to prepare very fine pianos by replacing a large fraction of its parts. These include the strings, pinblock, bridges, soundboard ribs, hammers, and many parts of the action. Restoration is generally worth doing only if the original piano was of high quality.


Other Wikipedia articles about the piano:

External links:


  • The Piano Book by Larry Fine (4th ed. Jamaica Plain, MA: Brookside Press, 2001; ISBN 1-929145-01-2) gives the basics of how pianos work, and a thorough evaluative survey of current pianos and their manufacturers. It also includes advice on buying and owning pianos.

  • The pianist's guide to pedaling by Joseph Banowetz (Bloomington : Indiana University Press, 1985) offers a history of the three piano pedals and covers the wide variety of ways in which they are used by professional pianists.


The piano is a crucial instrument in the tradition of Western
classical music. Most composers have also been pianists, and have frequently used the piano as a tool for composition. The piano is also very important to jazz, as well as to various forms of popular music.

A person who plays a piano is known as a pianist.

Piano is also a dynamic direction in music, often appearing in sheet music as p, and indicating to the performer that he should play softly. It is the opposite of forte, meaning "loudly".

The Piano is also a 1993 film starring Harvey Keitel and Holly Hunter.

" size=20>


Browse articles alphabetically:
#0">0 | #1">1 | #2">2 | #3">3 | #4">4 | #5">5 | #6">6 | #7">7 | #8">8 | #9">9 | #_">_ | #A">A | #B">B | #C">C | #D">D | #E">E | #F">F | #G">G | #H">H | #I">I | #J">J | #K">K | #L">L | #M">M | #N">N | #O">O | #P">P | #Q">Q | #R">R | #S">S | #T">T | #U">U | #V">V | #W">W | #X">X | #Y">Y | #Z">Z