Automorphic number

In mathematics an automorphic number is a number whose square ends in the same digit or digits as that or those of the number itself. For example, 52 = 25, 762 = 5776, and 8906252 = 793212890625.

Tables of automorphic numbers

nn2
525
25625
625390625
906258212890625
890625793212890625
28906258355712890625
12890625166168212890625
21289062545322418212890625
821289062567451572418212890625
18212890625331709384918212890625
918212890625843114912509918212890625
991821289062598370946943759918212890625
599182128906253590192236006259918212890625
25991821289062567557477392256259918212890625
625991821289062539186576032079756259918212890625
562599182128906253165178397321142256259918212890625
256259918212890625 65669145682477392256259918212890625
2256259918212890625 5090708818534039892256259918212890625
92256259918212890625 8511217494096854352392256259918212890625
392256259918212890625 153864973445024588727392256259918212890625
7392256259918212890625 54645452612300005057477392256259918212890625
77392256259918212890625 5989561329000849809744977392256259918212890625
977392256259918212890625 955295622596853633012869977392256259918212890625
9977392256259918212890625 99548356235275381465044119977392256259918212890625
19977392256259918212890625 399096201360473745722856619977392256259918212890625
619977392256259918212890625 384371966908872375601191606619977392256259918212890625
6619977392256259918212890625 43824100673983991394155879106619977392256259918212890625
106619977392256259918212890625 11367819579125235975036734004106619977392256259918212890625
4106619977392256259918212890625 16864327638717175315320739859004106619977392256259918212890625
9004106619977392256259918212890625 81073936023920699329853843152771109004106619977392256259918212890625

nn2
636
765776
376141376
937687909376
10937611963109376
710937650543227109376
871093767588043387109376
787109376619541169787109376
17871093763193759921787109376
817871093766689131260081787109376
400817871093761606549657881340081787109376
740081787109376547721051611007740081787109376
3740081787109376 13988211774267263740081787109376
43740081787109376 1913194754743017343740081787109376
743740081787109376 553149309256696143743740081787109376
7743740081787109376 59965510454276227407743740081787109376
607743740081787109376 369352453608598807478607743740081787109376
2607743740081787109376 6800327413935747244982607743740081787109376
22607743740081787109376 511110077017207231620022607743740081787109376
80022607743740081787109376 6403617750108490103144731780022607743740081787109376
380022607743740081787109376 144417182396352539175410357380022607743740081787109376
3380022607743740081787109376 11424552828858793029898066613380022607743740081787109376
893380022607743740081787109376 798127864794612716138610952755893380022607743740081787109376
5893380022607743740081787109376 34731928090872050116956482046515893380022607743740081787109376
995893380022607743740081787109376 991803624372854204655478894958610995893380022607743740081787109376
\n


">
" size=20>

 
 

Browse articles alphabetically:
#0">0 | #1">1 | #2">2 | #3">3 | #4">4 | #5">5 | #6">6 | #7">7 | #8">8 | #9">9 | #_">_ | #A">A | #B">B | #C">C | #D">D | #E">E | #F">F | #G">G | #H">H | #I">I | #J">J | #K">K | #L">L | #M">M | #N">N | #O">O | #P">P | #Q">Q | #R">R | #S">S | #T">T | #U">U | #V">V | #W">W | #X">X | #Y">Y | #Z">Z